ATU Sligo /ATU St Angela's

go

Amazon cover image
Image from Amazon.com

Pavement engineering : principles and practice /

By: Mallick, Rajib Basu, 1966-.
Contributor(s): El-Korchi, Tahar.
Publisher: Boca Raton, Fla. : CRC Press, 2013Edition: Second edition.Description: xxvii, 666 pages : illustrations, maps ; 26 cm.Content type: text | still image | cartographic image Media type: unmediated Carrier type: volumeISBN: 9781439870358 (hardback); 9781439870358:; 1439870357 (hardback).Subject(s): Engineering, Civil | Pavements -- Design and constructionDDC classification: 625.88
Contents:
Machine generated contents note: ch. 1 Introduction and Description of Pavements -- 1.1.Importance -- 1.2.Functions -- 1.3.Design and Construction -- 1.4.Maintenance and Rehabilitation -- 1.5.Important Issues -- 1.6.Functional Requirements -- 1.7.Types and Uses of Pavements -- 1.8.Different Features of Typical Asphalt Pavements -- 1.9.Different Features of Typical Concrete Pavements -- 1.9.1.Jointed Plain Concrete Pavements -- 1.9.2.Jointed Reinforced Concrete Pavements -- 1.9.3.Continuously Reinforced Concrete Pavements -- 1.9.4.Composite Pavements -- 1.9.5.Selecting the Type of Pavement -- 1.10.Research on Pavements -- Questions -- ch. 2 Principles of Mix and Structural Design and Construction of Asphalt Pavement -- 2.1.Overview -- 2.2.Traffic and Load Distribution Concept -- 2.3.Materials and Layers -- 2.3.1.Soils -- 2.3.2.Aggregates -- 2.3.3.Asphalt -- 2.4.Environment -- 2.5.Mix Design -- 2.6.Structural Design -- 2.7.Link between Mix and Structural Design -- 2.8.Theoretical Considerations for Structural Design -- 2.8.1.Hooke's Theory of Elasticity -- 2.8.2.Boussinesq's Method -- 2.8.3.Application, Extension, and Refinement of Boussinesq's Method -- 2.8.4.Burmister's Method for Two-Layer Systems -- 2.8.5.Odemark's Method of Equivalent Layers -- 2.8.6.Fox and Acum and Fox's Solutions -- 2.8.7.Computer Programs -- 2.9.Principles of Good Construction -- 2.10.Putting Everything Together -- Questions -- ch. 3 Principles of Structural Design, Mix Design, and Construction of Concrete Pavements -- 3.1.Overview -- 3.2.Structural Design -- 3.3.Theoretical Considerations -- 3.3.1.Stresses Due to Curvature and Bending in Slabs -- 3.3.2.Stresses Due to Temperature Curling -- 3.3.3.Stresses and Deflections due to Applied Loading -- 3.3.3.1.Corner Slab Loading -- 3.3.3.2.Interior Slab Loading -- 3.3.3.3.Edge Slab Loading -- 3.4.Computer Programs for Rigid Pavements -- 3.5.Combined Stresses -- 3.6.Stresses Due to Friction -- 3.7.Joint Opening -- 3.8.Joints -- 3.8.1.Transverse Contraction Joints -- 3.8.2.Longitudinal Joints -- 3.8.3.Construction Joints -- 3.8.4.Expansion Joints -- 3.8.5.Joint Design -- 3.8.6.Joint Spacing for Airfields -- 3.8.7.Variable Joint Spacing -- 3.8.8.Skewed Joints -- 3.8.9.Aggregate Interlock between Joints -- 3.8.10.Design of Dowels -- 3.8.11.Dowel Diameter Design -- 3.8.11.1.Allowable Bearing Stress -- 3.8.11.2.Bearing Stress on One Dowel -- 3.9.Concrete Properties and Mix Design -- 3.9.1.Hydration, Strength, and Materials -- 3.9.1.1.Construction -- Questions -- ch. 4 Standards -- 4.1.Importance of Standards -- 4.2.The American Society of Testing and Materials -- 4.3.The American Society of State Highway and Transportation Officials -- 4.4.Use of Standards in Materials Selection, Mix Design, and Structural Design -- 4.5.Use of Standards in Quality Control in Construction -- 4.6.Important Specifications -- Questions -- ch. 5 Traffic -- 5.1.Different Types of Highway Traffic -- 5.2.Measurement of Traffic Loads -- 5.3.Load Equivalency Factor and Equivalent Single-Axle Load -- 5.3.1.Flexible Pavements -- 5.3.2.Rigid Pavements -- 5.4.Alternative Load Equivalent Factor Concept -- 5.5.Equivalent Single-Wheel Load -- 5.5.1.Conversion to Equivalent Gear -- 5.5.2.Conversion to Equivalent Annual Departure -- 5.6.Truck Tire Pressure -- 5.7.Truck Speed -- 5.7.1.Effect of Load and Tire Pressure -- 5.8.Aircraft Loading, Gear Configuration, and Tire Pressure -- Questions -- ch. 6 Drainage -- 6.1.Source and Effect of Water -- 6.2.Estimating Flow -- 6.2.1.Return Period -- 6.2.2.Rainfall Intensity -- 6.3.Hydroplaning and Surface Drainage System -- 6.4.Inlets -- 6.5.Subsurface Drainage System -- 6.5.1.Groundwater -- 6.5.2.Water Entering through Cracks -- 6.5.3.Artesian Aquifers -- 6.5.4.Melting Snow -- 6.6.Design of Subsurface Drainage Structures -- 6.6.1.Design of Permeable Base -- 6.6.1.1.Materials for Permeable Base -- 6.6.2.Design of Separator or Filter Layer -- 6.6.2.1.Geotextile Separator Layer -- 6.6.3.Design of Edge Drains -- 6.7.Consideration of Drainage in Pavement Design -- 6.8.Pumping in Rigid Pavements -- 6.9.Use of Software for Design of Drainage Structures -- Questions -- ch. 7 Soil -- 7.1.Overview -- 7.2.Soils in Subgrade -- 7.3.Mass-Volume Relationships -- 7.4.Grain Size Distribution: Gradation -- 7.5.Effect of Water -- 7.6.Soil Classification -- 7.6.1.AASHTO Method -- 7.6.2.Unified Soil Classification System (ASTM) -- 7.7.Density and Optimum Moisture Content -- 7.8.Hydraulic Conductivity -- 7.9.Frost Susceptibility -- 7.10.Swell Potential -- 7.11.Stiffness and Strength of Soils -- 7.11.1.California Bearing Ratio Test (AASHTO T-193) -- 7.11.2.Resilient Modulus Test (AASHTO T-307) -- 7.11.3.Dynamic Cone Penetrometer (ASTM D6951) -- 7.12.Subgrade Soil Tests for Rigid Pavements -- 7.12.1.Plate Load Test -- 7.13.Subbase and Unstabilized Base -- 7.14.Soil Stabilization Concepts and Methods: Chemical and Mechanical -- 7.14.1.Mechanical Stabilization by Densification or Compaction -- 7.14.1.1.Effect of Compaction on Soil Properties -- 7.14.1.2.Field Compaction -- 7.14.1.3.Field Control -- 7.14.1.4.Measuring Devices -- 7.14.1.5.Intelligent Soil Compaction System -- 7.14.2.Use of Geosynthetics -- 7.14.3.Lime Treatment of Soils -- 7.14.4.Cement Treatment of Soil -- 7.14.4.1.Mixture Design Process -- 7.14.5.Asphalt (Bituminous) Treated Soil -- 7.14.5.1.Stabilization Mechanism with Asphalt Treatment -- 7.14.5.2.Mix Design Procedure -- 7.15.Dust Control -- Questions -- ch. 8 Aggregates for Asphalt and Concrete Mixes -- 8.1.Definition, Parent Rock, and Types -- 8.2.Suitability for Application -- 8.3.Production -- 8.4.Overview of Desirable Properties -- 8.4.1.Properties Critical for Structural Layers -- 8.4.2.Properties Critical for Drainage Layers -- 8.4.3.Properties Critical for Asphalt Mix Layers -- 8.4.4.Properties Critical for Cement Concrete Layers -- 8.5.Gradation for Asphalt Pavements -- 8.5.1.Aggregate Tests -- 8.6.Specific Gravities and Absorption -- 8.7.Cleanliness and Deleterious Materials -- 8.8.Toughness or Resistance against Abrasion Loss -- 8.9.Particle Shape and Surface Texture -- 8.10.Durability/Soundness -- 8.11.Expansive Characteristics -- 8.12.Polishing and Frictional Characteristics -- 8.13.Aggregate Tests Specifically for Concrete -- 8.13.1.Fineness Modulus (FM; ASTM C125) -- 8.13.2.Gradation -- 8.13.3.Bulk Density and Voids in Aggregates Test -- 8.14.Automated Aggregate Analysis (AASHTO TP81 and PP64) -- 8.15.Artificial Aggregates -- Questions -- ch. 9 Asphalt and Emulsions -- 9.1.Asphalt Binder -- 9.2.Naturally Occurring Asphalts -- 9.2.1.Lake Asphalt -- 9.2.2.Rock Asphalt -- 9.2.3.Gilsonite -- 9.3.Refined Asphalt from Crude Oil -- 9.4.Safe Delivery, Storage, and Handling of Asphalts -- 9.4.1.Causes of Hazards and Precautions -- 9.4.2.Health Hazards -- 9.4.3.Precautions and Good Practices -- 9.5.Asphalt Binder Properties -- 9.5.1.Specific Gravity: ASTM D-70 -- 9.5.2.Cleveland Open Cup Method (Flash Point): ASTM D-92 -- 9.5.3.Solubility Test: ASTM D-2042 -- 9.5.4.Spot Test: AASHTO T-102 -- 9.5.5.Penetration: ASTM D-5 -- 9.5.6.Viscosity Tests -- 9.5.7.Softening Point (Ring and Ball) Test: ASTM D-36 -- 9.5.8.Fraass Breaking Point Test: BS EN 12593, BS 2000-8 -- 9.5.9.Ductility: ASTM D113 -- 9.5.10.Thin Film Oven Test (TFOT): ASTM D1754 -- 9.5.11.Rolling Thin Film Oven Test (RTFOT): ASTM D-2872, BS EN 12591, AASHTOT-240 -- 9.6.Asphalt Binder Properties and Pavement Distress and Performance -- 9.6.1.Aging of Asphalt Binder -- 9.6.1.1.Hardening -- 9.7.Stiffness -- 9.7.1.Viscosity for Stiffness -- 9.8.Viscoelastic Nature of Asphalt and Direct Measurement of Stiffness -- 9.9.Tensile Behavior -- 9.10.Superpave (Superior Performing Asphalt Pavements) -- 9.10.1.High-Temperature Viscosity -- 9.10.2.Complex Modulus and Phase Angle -- 9.10.3.Aging Tests -- 9.10.4.DSR Tests Conducted on Aged Asphalt -- 9.10.5.Low-Temperature Stiffness (ASTM D-6648, AASHTO T-313) -- 9.10.6.Direct Tension Test (ASTM D-6723, AASHTO T-314) -- 9.10.7.Superpave Requirements -- 9.10.7.1.Explanation -- 9.10.8.Multiple Stress Creep Recovery Test (AASHTO TP70, Specification, AASHTO MP19) -- 9.11.Recovery of Asphalt Binder from Asphalt Mix -- 9.12.Adhesion Properties -- 9.13.Asphalt Emulsions -- 9.13.1.Properties -- 9.13.2.Tests for Asphalt Emulsions -- 9.13.3.Classification of Emulsions and Selection -- Questions -- ch. 10 Concrete Fundamentals for Rigid Pavements -- 10.1.Concrete -- 10.2.Aggregates -- 10.3.Cement -- 10.3.1.Types of Portland Cement -- 10.4.Water -- 10.5.Hydration -- 10.6.Steel in Concrete -- Questions -- ch. 11 Distress and Performance -- 11.1.Distresses in Asphalt Pavements -- 11.1.1.Bleeding -- 11.1.2.Block Cracking -- 11.1.3.Corrugations -- 11.1.4.Delamination -- 11.1.5.Edge Cracks -- 11.1.6.Fatigue Cracks and Edge Fatigue Cracks -- 11.1.7.Longitudinal Joint Cracks -- 11.1.8.Polished Aggregate -- 11.1.9.Potholes -- 11.1.10.Raveling -- 11.1.11.Reflective Cracking -- 11.1.12.Rutting -- 11.1.13.Slippage Crack -- 11.1.14.Thermal Cracks -- 11.2.Distresses in Concrete Pavements -- 11.2.1.Corner Breaks -- 11.2.2.Durability Cracking (or "D" Cracking) -- 11.2.3.Longitudinal Cracking -- 11.2.4.Transverse Cracking -- 11.2.5.Spalling of Transverse Joints -- 11.2.6.Map Cracking and Scaling -- 11.2.7.Polished Aggregate -- 11.2.8.Popouts -- 11.2.9.Blowups -- 11.2.10.Faulting of Transverse Joints and Cracks -- 11.2.11.Lane-to-Shoulder Dropoff -- 11.2.12.Lane-to-Shoulder Separation -- 11.2.13.Patch/Patch Deterioration -- 11.2.14.Water Bleeding and Pumping -- 11.2.15.Punchouts -- 11.2.16.Joint Seal Damage -- 11.3.Consideration of Performance -- 11.4.Damage -- 11.5.Forensic Investigation for Determination of Type and Cause of Distress -- 11.5.1.Forensic Investigation Plan -- 11.5.2.Nondestructive and Destructive Tests -- Questions -- ch. 12 Consideration of Major Distress Mechanisms and Material Characterization for Asphalt Pavements -- 12.1.Fatigue Cracking -- 12.1.1.Material Characterization Tests --
Note continued: 12.1.1.1.Indirect Tensile Strength: Test Method -- 12.1.1.2.Resilient Modulus -- 12.1.1.3.Dynamic Modulus (AASHTO TP62-03) -- 12.1.2.Models -- 12.1.3.Definition of Failure -- 12.1.4.Use of Models -- 12.1.5.Relationship between Mix Design and Fatigue Performance -- 12.1.6.Relationship between Pavement Structure and Fatigue Performance -- 12.1.6.1.Steps for Avoiding Premature Fatigue Cracking -- 12.2.Thermal Cracking -- 12.2.1.Material Characterization -- 12.2.2.Models -- 12.2.2.1.Environmental Conditions -- 12.2.2.2.Regression Equation Approach -- 12.2.2.3.Fracture Mechanics Approach: SHRP Thermal Cracking Model -- 12.2.2.4.Models for Cracking -- 12.2.3.Cracking and Properties of Asphalts and Aggregates -- 12.3.Rutting or Permanent Deformation -- 12.3.1.Material Characterization -- 12.3.1.1.Creep Testing -- 12.3.1.2.Triaxial Test -- 12.3.2.Models -- 12.3.2.1.Consideration of Rutting in Asphalt Mix Only -- 12.3.2.2.Statistical Predictive Models on the Basis of Different Properties -- 12.3.2.3.Layered Vertical Permanent Strain Approach -- 12.3.2.4.Permanent Strain Rate Method -- 12.3.2.5.Plastic-Elastic Vertical Strain Ratio Method -- 12.3.2.6.Rutting Rate Method -- 12.3.2.7.Alternate Model Relating Tertiary Flow Characteristics to Mix Properties -- 12.3.2.8.Models for Unbound Materials -- 12.3.2.9.Ayres Combined Model for Subgrade and Granular Materials -- 12.3.2.10.Equivalent Temperature Concept -- 12.3.2.11.El-Basyouny and Witczak Mode! -- 12.3.3.Definition of Failure -- 12.4.Smoothness Consideration -- 12.5.Top-Down Cracking -- 12.5.1.Pavement Surface Characteristics -- Questions -- ch. 13 Distress Models and Material Characterization for Concrete Pavements -- 13.1.Distresses and Models -- 13.1.1.Cracking -- 13.1.1.1.Fatigue Cracking in JPCP -- 13.1.1.2.Zero-Maintenance Design Fatigue Model -- 13.1.1.3.Calibrated Mechanistic Design Fatigue Model -- 13.1.1.4.ERES-COE Fatigue Model -- 13.1.1.5.PCA Fatigue Model -- 13.1.1.6.ARE Fatigue Model -- 13.1.1.7.Vesic Distress Model -- 13.1.1.8.RISC Distress Function -- 13.1.1.9.Transverse Cracking -- 13.1.2.Transverse Joint Faulting in Jointed Plain Concrete Pavements -- 13.1.2.1.Models to Predict Faulting -- 13.1.2.2.Slab Corner Deflections -- 13.1.3.Erosion Characterization of Base/Subbase -- 13.1.4.Characterizing Free Water within a Pavement Structure -- 13.1.5.PRS M-E Transverse Joint-Faulting Prediction Model -- 13.1.6.Punchouts in Continuously Reinforced Concrete Pavements -- 13.1.6.1.Development of CRCP Punchout Models -- 13.1.6.2.Punchout Distress Model -- 13.1.7.Smoothness Considerations -- 13.2.Tests for Concrete -- 13.2.1.Flexural Strength Tests -- 13.2.2.Compressive Strength -- 13.2.3.Tensile Strength -- 13.2.4.Coefficient of Thermal Expansion Test -- 13.2.5.Fatigue Testing for PCC -- Questions -- ch. 14 Mix and Structural Design of Asphalt Mix Layers -- 14.1.Physical and Volumetric Properties of Asphalt Mix -- 14.1.1.Bulk-Specific Gravity of Compacted Asphalt Mix (Gmb) -- 14.1.2.Theoretical Maximum Density or Maximum Specific Gravity of the Mix (Gmm)/Rice Specific Gravity -- 14.2.Mix Design Methods -- 14.2.1.Hveem Method (ASTM D-1560, D-1561) -- 14.2.2.Marshall Method -- 14.2.3.Superpave Method -- 14.2.3.1.Mix Design Systems of South Africa, France, the United Kingdom and Australia -- 14.3.Structural Design -- 14.3.1.Empirical Methods -- 14.3.1.1.California Bearing Ratio Method -- 14.3.1.2.American Association of State Highway and Transportation Officials Method -- 14.3.2.Mechanistic-Empirical Methods -- 14.3.2.1.Example of Structural Design Procedure Using Mechanistic Principles -- 14.3.2.2.NCHRP 1-37A Mechanistic-Empirical Design Guide -- Questions -- ch. 15 Mix Design and Structural Design for Concrete Pavements -- 15.1.Mix Design -- 15.1.1.Concrete Strength -- 15.1.2.Water-to-Cementitious Materials Ratio -- 15.1.3.Selection of the Water-to-Cementitious Materials Ratio -- 15.1.4.Aggregates -- 15.1.5.Air Content in Concrete -- 15.1.6.Slump -- 15.1.7.Water Content -- 15.1.8.Cementing Materials Content and Type -- 15.1.9.Admixtures -- 15.1.10.Example of Mix Design -- 15.2.Structural Design -- 15.2.1.AASHTO Method -- 15.2.2.Design Input Parameters -- 15.2.2.1.Reliability -- 15.2.2.2.Serviceability -- 15.2.2.3.Drainage Coefficient (Cd) -- 15.2.2.4.Load Transfer Coefficient (J) -- 15.2.3.Rigid Foundation at Shallow Depth -- 15.2.4.Effective Modulus of Subgrade Reaction -- 15.2.4.1.Software Solutions -- 15.2.4.2.AASHTO 1998 Supplement to Design Guide -- 15.2.4.3.MEPDG Design Guide -- 15.2.4.4.Continuously Reinforced Concrete Pavements -- 15.2.4.5.CRCP Design Criteria -- 15.2.4.6.Structural Performance -- 15.2.4.7.Functional Performance -- 15.2.4.8.Reinforcement for CRCP -- 15.2.4.9.Design Methods for CRCP -- 15.2.4.10.AASHTO Interim MEPDG -- 15.2.4.11.AASHTO-86/93 Design Procedure -- 15.2.4.12.Reinforcement Design -- 15.2.4.13.Design Variables for Longitudinal Reinforcement: AASHTO Method -- 15.2.4.14.Limiting Criteria -- 15.2.4.15.Longitudinal Reinforcement Design Procedure -- Questions -- ch. 16 Construction of Asphalt Pavements -- 16.1.Overview -- 16.1.1.Production -- 16.1.2.Transportation and Laydown -- 16.2.Description and Requirements of Components in Hot Mix Asphalt-Producing Plants -- 16.2.1.Aggregate Stockpiles -- 16.2.2.Cold Feed Bins -- 16.2.3.Dryer Drum -- 16.2.4.Hot Elevator and Bins -- 16.2.5.Pugmill -- 16.2.6.Hauling and Storage -- 16.2.7.Drum Plant -- 16.2.8.Dust Collection from HMA Plants -- 16.2.9.Asphalt Storage Tanks -- 16.3.Equipment Used for Transportation, Laydown, and Compaction -- 16.3.1.Trucks -- 16.3.2.Pavers -- 16.3.3.Rollers -- 16.4.Important Factors -- 16.5.Specifications -- 16.5.1.Variability of Materials -- 16.5.2.Use of Quality Control Charts -- 16.6.Preparation of Subgrade and Construction of Base and Subbase Layers -- 16.7.Quality Control and Quality Assurance -- 16.8.Construction of Longitudinal Joints -- 16.8.1.Techniques of Constructing Good Longitudinal Joints -- 16.8.1.1.Combination of Notched Wedge Joint, Rubberized Asphalt Tack Coat, and Minimum Joint Density Requirements -- 16.8.1.2.Rubberized Asphalt Tack Coat and Minimum Joint Density Requirements -- 16.8.1.3.Notched Wedge Joint and Minimum Joint Density Requirements -- 16.8.1.4.Cutting Wheel and Minimum Joint Density Requirements -- 16.8.1.5.Infrared Joint Heating and Minimum Joint Density Requirements -- Questions -- ch. 17 Construction of Concrete Pavements -- 17.1.Overview -- 17.2.Concrete Production -- 17.3.Preparation of Subgrade and Base -- 17.4.Presetting Reinforcements such as Dowel Bars, Tiebars, and Continuous Reinforcement -- 17.4.1.Dowel Bars -- 17.4.2.Tiebars -- 17.4.2.1.Reinforcing Steel (CRCP) -- 17.5.PCC Slab Construction -- 17.5.1.Slipform Paving -- 17.5.2.Stringlines for Slipform Paver -- 17.5.3.Fixed Form Paving -- 17.5.4.Concrete Placement -- 17.5.5.Consolidation -- 17.5.6.Screeding -- 17.6.Finishing -- 17.6.1.Bullfloating -- 17.6.2.Texturing -- 17.6.3.Protection of Pavement Surface from Rain -- 17.6.4.Construction Headers -- 17.7.Curing -- 17.7.1.Evaporation Rate -- 17.8.Paving in Hot and Cold Weather Conditions -- 17.8.1.Edge Slump -- 17.8.2.Smoothness -- 17.9.Jointing -- 17.10.HIPERPAV Software -- 17.11.Joint Sealing -- 17.11.1.Quality Assurance/Quality Control (QC/QA) -- 17.11.2.Differential Scanning Calorimeter -- 17.11.3.Blaine Fineness -- 17.11.4.Gradation -- 17.11.5.Penetration Resistance -- 17.11.6.Cement Materials Temperature Profile (the "Coffee Cup Test") -- 17.11.7.Water-Cement Ratio (Microwave Oven Test) -- 17.11.8.Concrete and Subgrade Temperature and Environmental Conditions -- 17.11.9.Concrete Strength (Early Age) -- 17.11.10.Air Void Analyzer -- 17.11.11.Maturity Test -- 17.11.11.1.Consistency -- 17.11.11.2.Air Content -- 17.11.11.3.Density and Yield -- 17.11.11.4.Sampling Fresh Concrete -- Questions -- ch. 18 Maintenance and Rehabilitation of Pavements: Pavement Management Systems -- 18.1.Overview -- 18.2.Steps in PMS -- 18.3.Different PMS Approaches -- 18.3.1.Criteria for Making Decisions -- 18.4.Distress Survey -- 18.5.Maintenance and Rehabilitation of Asphalt Pavements -- 18.5.1.Maintenance -- 18.5.1.1.Primary Corrective Maintenance Activities -- 18.5.1.2.Primary Preventive Maintenance Activities -- 18.5.2.Recycling -- 18.5.2.1.Hot In-Place Recycling -- 18.5.2.2.Cold Recycling -- 18.5.2.3.Hot Mix Recycling -- 18.6.Maintenance and Rehabilitation of Concrete Pavements -- 18.6.1.Joint and Crack Sealing -- 18.6.2.Slab Stabilization -- 18.6.3.Diamond Grinding -- 18.6.4.Load Transfer Devices -- 18.6.5.Precast Panels for Repair and Rehabilitation -- 18.6.6.Portland Cement Concrete Overlays -- 18.7.Warranty Projects -- Questions -- ch. 19 Airport Pavements -- 19.1.Types, Importance, and Specifications -- 19.2.Structural Design of Airport Asphalt Mix Pavements -- 19.2.1.Design of Flexible Pavement over Existing Pavement -- 19.2.1.1.HMA Overlay on Existing Flexible Pavement -- 19.2.1.2.HMA Overlay on Existing Rigid Pavement with or without Existing HMA Overlay -- 19.3.Design of Concrete Pavements -- 19.4.Design for Airport Pavements with Light Aircrafts -- 19.5.Advanced Design Methods -- 19.5.1.Asphalt Pavements -- 19.5.1.1.For Vertical Strain ev on Top of the Subgrade -- 19.5.1.2.For Horizontal Strain eh at the Bottom of the Surface Layer -- 19.5.2.Rigid Pavements -- 19.6.Nondestructive Testing and Rehabilitation of Airfield Pavements -- 19.7.ACN-PCN -- 19.8.Rehabilitation of PCC Airport Pavements -- 19.9.Construction Quality Control and Acceptance Testing -- 19.10.Constructing, Checking, and Improving Friction/Skid Resistance Drainage of Runways -- 19.11.Asphalt Mixes for Airport Pavement -- 19.11.1.Fuel-Resistant Mix -- 19.11.2.Construction and Maintenance of Longitudinal Joints -- 19.11.3.Time of Construction -- 19.11.4.De-Icing and Anti-Icing -- 19.12.Maintenance of Airport Pavements -- Questions -- ch. 20 Nondestructive Tests -- 20.1.Nuclear Gage -- 20.2.Falling Weight Deflectometer --
Note continued: 20.2.1.Direct Use of Deflections -- 20.2.1.1.Relationship between Deflection Bowl Parameters and Stresses and Strains at Various Locations in the Pavement -- 20.2.2.Back-Calculation -- 20.2.2.1.Steps in Performing Back-Calculation with Evercalc Program -- 20.2.2.2.Detection of Voids in PCC Pavements -- 20.2.2.3.Detection of Nonresilient Pavement Layer Behavior -- 20.2.2.4.Evaluation of Experimental Paving Materials -- 20.2.2.5.Determination of Load Transfer Efficiency for Jointed PCC Pavements -- 20.3.Portable Falling Weight Deflectometer -- 20.4.Rolling Wheel Deflectometer -- 20.5.GeoGauge (Soil Stiffness Gauge) for Soil Compaction -- 20.6.Ground-Penetrating Radar -- 20.7.Portable Seismic Pavement Analyzer -- 20.8.Free Free Resonant Column Test -- 20.9.Ultrasonic Test -- 20.10.Magnetic Induction Tomography -- Question -- ch. 21 Economic Analysis and Cost-Saving Concepts -- 21.1.Economic Analysis -- 21.1.1.Engineering Economy -- 21.1.2.Concept of Life Cycle Cost -- 21.1.3.Techniques -- 21.1.4.Costs in Life Cycle Cost Analysis -- 21.1.5.Probabilistic versus Deterministic Approach -- 21.1.6.Information on Life Cycle Cost Analysis for Pavements -- 21.1.7.Software for Running Life Cycle Cost Analysis -- 21.2.Cost-Saving Concepts -- 21.2.1.Principles of Perpetual Pavements -- 21.2.2.Economic Benefits of Recycling -- Questions -- ch. 22 Instrumentation in Asphalt and Concrete Pavement -- 22.1.Temperature -- 22.2.Soil Moisture Content -- 22.3.Frost Depth -- 22.4.Strain in Asphalt or Concrete Pavement and Soil Layers -- 22.5.Stress in Soil Layers -- 22.6.Deflection in Layers -- 22.7.Data Acquisition Systems -- Questions -- ch. 23 Specialty Applications -- 23.1.Asphalt Mixtures -- 23.1.1.Polymer-Modified Asphalt -- 23.1.2.Asphalt Rubber Mixes -- 23.1.3.Stone Matrix Asphalt -- 23.1.4.Porous Friction Course -- 23.1.5.Warm Mix Asphalt -- 23.1.6.Ultrathin Wearing Course -- 23.2.Concrete Whitetopping -- Questions -- ch. 24 Sustainable Pavement Engineering -- 24.1.Need for Pavements -- 24.2.First Consideration -- 24.3.Design of Layout of Pavements -- 24.4.Construction of Pavements -- 24.5.Use of Waste and Byproducts in Pavements -- 24.6.Workers -- 24.7.Pavement-Building-Nature Symbiosis -- 24.8.Regulatory Bodies and Impetus for Sustainability -- 24.9.Human Factor -- Questions -- ch. 25 Environmental Mitigation in Transportation Projects -- 25.1.How Transportation Impacts the Environment -- 25.2.Model for Assessing Impacts and Developing Mitigation Measures -- 25.3.Project Conception -- 25.4.Impact Assessment -- 25.5.Alternatives Analysis -- 25.6.Public Involvement and Review -- 25.7.Enforcement and Post-Project Monitoring -- 25.8.Transportation Planning and Regional Mitigation Approaches -- Questions.
Summary: Covering the entire range of pavement construction, from soil preparation to structural design, life-cycle costing, and analysis, this book integrates the concepts of mix and structural design, emphasizing pavement evaluation and rehabilitation techniques.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
Standard Loan Standard Loan ATU Sligo Yeats Library Main Lending Collection 625.88 MAL (Browse shelf(Opens below)) 1 Lost Checked out 19/05/2020 0090775
Total holds: 0

Machine generated contents note: ch. 1 Introduction and Description of Pavements -- 1.1.Importance -- 1.2.Functions -- 1.3.Design and Construction -- 1.4.Maintenance and Rehabilitation -- 1.5.Important Issues -- 1.6.Functional Requirements -- 1.7.Types and Uses of Pavements -- 1.8.Different Features of Typical Asphalt Pavements -- 1.9.Different Features of Typical Concrete Pavements -- 1.9.1.Jointed Plain Concrete Pavements -- 1.9.2.Jointed Reinforced Concrete Pavements -- 1.9.3.Continuously Reinforced Concrete Pavements -- 1.9.4.Composite Pavements -- 1.9.5.Selecting the Type of Pavement -- 1.10.Research on Pavements -- Questions -- ch. 2 Principles of Mix and Structural Design and Construction of Asphalt Pavement -- 2.1.Overview -- 2.2.Traffic and Load Distribution Concept -- 2.3.Materials and Layers -- 2.3.1.Soils -- 2.3.2.Aggregates -- 2.3.3.Asphalt -- 2.4.Environment -- 2.5.Mix Design -- 2.6.Structural Design -- 2.7.Link between Mix and Structural Design -- 2.8.Theoretical Considerations for Structural Design -- 2.8.1.Hooke's Theory of Elasticity -- 2.8.2.Boussinesq's Method -- 2.8.3.Application, Extension, and Refinement of Boussinesq's Method -- 2.8.4.Burmister's Method for Two-Layer Systems -- 2.8.5.Odemark's Method of Equivalent Layers -- 2.8.6.Fox and Acum and Fox's Solutions -- 2.8.7.Computer Programs -- 2.9.Principles of Good Construction -- 2.10.Putting Everything Together -- Questions -- ch. 3 Principles of Structural Design, Mix Design, and Construction of Concrete Pavements -- 3.1.Overview -- 3.2.Structural Design -- 3.3.Theoretical Considerations -- 3.3.1.Stresses Due to Curvature and Bending in Slabs -- 3.3.2.Stresses Due to Temperature Curling -- 3.3.3.Stresses and Deflections due to Applied Loading -- 3.3.3.1.Corner Slab Loading -- 3.3.3.2.Interior Slab Loading -- 3.3.3.3.Edge Slab Loading -- 3.4.Computer Programs for Rigid Pavements -- 3.5.Combined Stresses -- 3.6.Stresses Due to Friction -- 3.7.Joint Opening -- 3.8.Joints -- 3.8.1.Transverse Contraction Joints -- 3.8.2.Longitudinal Joints -- 3.8.3.Construction Joints -- 3.8.4.Expansion Joints -- 3.8.5.Joint Design -- 3.8.6.Joint Spacing for Airfields -- 3.8.7.Variable Joint Spacing -- 3.8.8.Skewed Joints -- 3.8.9.Aggregate Interlock between Joints -- 3.8.10.Design of Dowels -- 3.8.11.Dowel Diameter Design -- 3.8.11.1.Allowable Bearing Stress -- 3.8.11.2.Bearing Stress on One Dowel -- 3.9.Concrete Properties and Mix Design -- 3.9.1.Hydration, Strength, and Materials -- 3.9.1.1.Construction -- Questions -- ch. 4 Standards -- 4.1.Importance of Standards -- 4.2.The American Society of Testing and Materials -- 4.3.The American Society of State Highway and Transportation Officials -- 4.4.Use of Standards in Materials Selection, Mix Design, and Structural Design -- 4.5.Use of Standards in Quality Control in Construction -- 4.6.Important Specifications -- Questions -- ch. 5 Traffic -- 5.1.Different Types of Highway Traffic -- 5.2.Measurement of Traffic Loads -- 5.3.Load Equivalency Factor and Equivalent Single-Axle Load -- 5.3.1.Flexible Pavements -- 5.3.2.Rigid Pavements -- 5.4.Alternative Load Equivalent Factor Concept -- 5.5.Equivalent Single-Wheel Load -- 5.5.1.Conversion to Equivalent Gear -- 5.5.2.Conversion to Equivalent Annual Departure -- 5.6.Truck Tire Pressure -- 5.7.Truck Speed -- 5.7.1.Effect of Load and Tire Pressure -- 5.8.Aircraft Loading, Gear Configuration, and Tire Pressure -- Questions -- ch. 6 Drainage -- 6.1.Source and Effect of Water -- 6.2.Estimating Flow -- 6.2.1.Return Period -- 6.2.2.Rainfall Intensity -- 6.3.Hydroplaning and Surface Drainage System -- 6.4.Inlets -- 6.5.Subsurface Drainage System -- 6.5.1.Groundwater -- 6.5.2.Water Entering through Cracks -- 6.5.3.Artesian Aquifers -- 6.5.4.Melting Snow -- 6.6.Design of Subsurface Drainage Structures -- 6.6.1.Design of Permeable Base -- 6.6.1.1.Materials for Permeable Base -- 6.6.2.Design of Separator or Filter Layer -- 6.6.2.1.Geotextile Separator Layer -- 6.6.3.Design of Edge Drains -- 6.7.Consideration of Drainage in Pavement Design -- 6.8.Pumping in Rigid Pavements -- 6.9.Use of Software for Design of Drainage Structures -- Questions -- ch. 7 Soil -- 7.1.Overview -- 7.2.Soils in Subgrade -- 7.3.Mass-Volume Relationships -- 7.4.Grain Size Distribution: Gradation -- 7.5.Effect of Water -- 7.6.Soil Classification -- 7.6.1.AASHTO Method -- 7.6.2.Unified Soil Classification System (ASTM) -- 7.7.Density and Optimum Moisture Content -- 7.8.Hydraulic Conductivity -- 7.9.Frost Susceptibility -- 7.10.Swell Potential -- 7.11.Stiffness and Strength of Soils -- 7.11.1.California Bearing Ratio Test (AASHTO T-193) -- 7.11.2.Resilient Modulus Test (AASHTO T-307) -- 7.11.3.Dynamic Cone Penetrometer (ASTM D6951) -- 7.12.Subgrade Soil Tests for Rigid Pavements -- 7.12.1.Plate Load Test -- 7.13.Subbase and Unstabilized Base -- 7.14.Soil Stabilization Concepts and Methods: Chemical and Mechanical -- 7.14.1.Mechanical Stabilization by Densification or Compaction -- 7.14.1.1.Effect of Compaction on Soil Properties -- 7.14.1.2.Field Compaction -- 7.14.1.3.Field Control -- 7.14.1.4.Measuring Devices -- 7.14.1.5.Intelligent Soil Compaction System -- 7.14.2.Use of Geosynthetics -- 7.14.3.Lime Treatment of Soils -- 7.14.4.Cement Treatment of Soil -- 7.14.4.1.Mixture Design Process -- 7.14.5.Asphalt (Bituminous) Treated Soil -- 7.14.5.1.Stabilization Mechanism with Asphalt Treatment -- 7.14.5.2.Mix Design Procedure -- 7.15.Dust Control -- Questions -- ch. 8 Aggregates for Asphalt and Concrete Mixes -- 8.1.Definition, Parent Rock, and Types -- 8.2.Suitability for Application -- 8.3.Production -- 8.4.Overview of Desirable Properties -- 8.4.1.Properties Critical for Structural Layers -- 8.4.2.Properties Critical for Drainage Layers -- 8.4.3.Properties Critical for Asphalt Mix Layers -- 8.4.4.Properties Critical for Cement Concrete Layers -- 8.5.Gradation for Asphalt Pavements -- 8.5.1.Aggregate Tests -- 8.6.Specific Gravities and Absorption -- 8.7.Cleanliness and Deleterious Materials -- 8.8.Toughness or Resistance against Abrasion Loss -- 8.9.Particle Shape and Surface Texture -- 8.10.Durability/Soundness -- 8.11.Expansive Characteristics -- 8.12.Polishing and Frictional Characteristics -- 8.13.Aggregate Tests Specifically for Concrete -- 8.13.1.Fineness Modulus (FM; ASTM C125) -- 8.13.2.Gradation -- 8.13.3.Bulk Density and Voids in Aggregates Test -- 8.14.Automated Aggregate Analysis (AASHTO TP81 and PP64) -- 8.15.Artificial Aggregates -- Questions -- ch. 9 Asphalt and Emulsions -- 9.1.Asphalt Binder -- 9.2.Naturally Occurring Asphalts -- 9.2.1.Lake Asphalt -- 9.2.2.Rock Asphalt -- 9.2.3.Gilsonite -- 9.3.Refined Asphalt from Crude Oil -- 9.4.Safe Delivery, Storage, and Handling of Asphalts -- 9.4.1.Causes of Hazards and Precautions -- 9.4.2.Health Hazards -- 9.4.3.Precautions and Good Practices -- 9.5.Asphalt Binder Properties -- 9.5.1.Specific Gravity: ASTM D-70 -- 9.5.2.Cleveland Open Cup Method (Flash Point): ASTM D-92 -- 9.5.3.Solubility Test: ASTM D-2042 -- 9.5.4.Spot Test: AASHTO T-102 -- 9.5.5.Penetration: ASTM D-5 -- 9.5.6.Viscosity Tests -- 9.5.7.Softening Point (Ring and Ball) Test: ASTM D-36 -- 9.5.8.Fraass Breaking Point Test: BS EN 12593, BS 2000-8 -- 9.5.9.Ductility: ASTM D113 -- 9.5.10.Thin Film Oven Test (TFOT): ASTM D1754 -- 9.5.11.Rolling Thin Film Oven Test (RTFOT): ASTM D-2872, BS EN 12591, AASHTOT-240 -- 9.6.Asphalt Binder Properties and Pavement Distress and Performance -- 9.6.1.Aging of Asphalt Binder -- 9.6.1.1.Hardening -- 9.7.Stiffness -- 9.7.1.Viscosity for Stiffness -- 9.8.Viscoelastic Nature of Asphalt and Direct Measurement of Stiffness -- 9.9.Tensile Behavior -- 9.10.Superpave (Superior Performing Asphalt Pavements) -- 9.10.1.High-Temperature Viscosity -- 9.10.2.Complex Modulus and Phase Angle -- 9.10.3.Aging Tests -- 9.10.4.DSR Tests Conducted on Aged Asphalt -- 9.10.5.Low-Temperature Stiffness (ASTM D-6648, AASHTO T-313) -- 9.10.6.Direct Tension Test (ASTM D-6723, AASHTO T-314) -- 9.10.7.Superpave Requirements -- 9.10.7.1.Explanation -- 9.10.8.Multiple Stress Creep Recovery Test (AASHTO TP70, Specification, AASHTO MP19) -- 9.11.Recovery of Asphalt Binder from Asphalt Mix -- 9.12.Adhesion Properties -- 9.13.Asphalt Emulsions -- 9.13.1.Properties -- 9.13.2.Tests for Asphalt Emulsions -- 9.13.3.Classification of Emulsions and Selection -- Questions -- ch. 10 Concrete Fundamentals for Rigid Pavements -- 10.1.Concrete -- 10.2.Aggregates -- 10.3.Cement -- 10.3.1.Types of Portland Cement -- 10.4.Water -- 10.5.Hydration -- 10.6.Steel in Concrete -- Questions -- ch. 11 Distress and Performance -- 11.1.Distresses in Asphalt Pavements -- 11.1.1.Bleeding -- 11.1.2.Block Cracking -- 11.1.3.Corrugations -- 11.1.4.Delamination -- 11.1.5.Edge Cracks -- 11.1.6.Fatigue Cracks and Edge Fatigue Cracks -- 11.1.7.Longitudinal Joint Cracks -- 11.1.8.Polished Aggregate -- 11.1.9.Potholes -- 11.1.10.Raveling -- 11.1.11.Reflective Cracking -- 11.1.12.Rutting -- 11.1.13.Slippage Crack -- 11.1.14.Thermal Cracks -- 11.2.Distresses in Concrete Pavements -- 11.2.1.Corner Breaks -- 11.2.2.Durability Cracking (or "D" Cracking) -- 11.2.3.Longitudinal Cracking -- 11.2.4.Transverse Cracking -- 11.2.5.Spalling of Transverse Joints -- 11.2.6.Map Cracking and Scaling -- 11.2.7.Polished Aggregate -- 11.2.8.Popouts -- 11.2.9.Blowups -- 11.2.10.Faulting of Transverse Joints and Cracks -- 11.2.11.Lane-to-Shoulder Dropoff -- 11.2.12.Lane-to-Shoulder Separation -- 11.2.13.Patch/Patch Deterioration -- 11.2.14.Water Bleeding and Pumping -- 11.2.15.Punchouts -- 11.2.16.Joint Seal Damage -- 11.3.Consideration of Performance -- 11.4.Damage -- 11.5.Forensic Investigation for Determination of Type and Cause of Distress -- 11.5.1.Forensic Investigation Plan -- 11.5.2.Nondestructive and Destructive Tests -- Questions -- ch. 12 Consideration of Major Distress Mechanisms and Material Characterization for Asphalt Pavements -- 12.1.Fatigue Cracking -- 12.1.1.Material Characterization Tests --

Note continued: 12.1.1.1.Indirect Tensile Strength: Test Method -- 12.1.1.2.Resilient Modulus -- 12.1.1.3.Dynamic Modulus (AASHTO TP62-03) -- 12.1.2.Models -- 12.1.3.Definition of Failure -- 12.1.4.Use of Models -- 12.1.5.Relationship between Mix Design and Fatigue Performance -- 12.1.6.Relationship between Pavement Structure and Fatigue Performance -- 12.1.6.1.Steps for Avoiding Premature Fatigue Cracking -- 12.2.Thermal Cracking -- 12.2.1.Material Characterization -- 12.2.2.Models -- 12.2.2.1.Environmental Conditions -- 12.2.2.2.Regression Equation Approach -- 12.2.2.3.Fracture Mechanics Approach: SHRP Thermal Cracking Model -- 12.2.2.4.Models for Cracking -- 12.2.3.Cracking and Properties of Asphalts and Aggregates -- 12.3.Rutting or Permanent Deformation -- 12.3.1.Material Characterization -- 12.3.1.1.Creep Testing -- 12.3.1.2.Triaxial Test -- 12.3.2.Models -- 12.3.2.1.Consideration of Rutting in Asphalt Mix Only -- 12.3.2.2.Statistical Predictive Models on the Basis of Different Properties -- 12.3.2.3.Layered Vertical Permanent Strain Approach -- 12.3.2.4.Permanent Strain Rate Method -- 12.3.2.5.Plastic-Elastic Vertical Strain Ratio Method -- 12.3.2.6.Rutting Rate Method -- 12.3.2.7.Alternate Model Relating Tertiary Flow Characteristics to Mix Properties -- 12.3.2.8.Models for Unbound Materials -- 12.3.2.9.Ayres Combined Model for Subgrade and Granular Materials -- 12.3.2.10.Equivalent Temperature Concept -- 12.3.2.11.El-Basyouny and Witczak Mode! -- 12.3.3.Definition of Failure -- 12.4.Smoothness Consideration -- 12.5.Top-Down Cracking -- 12.5.1.Pavement Surface Characteristics -- Questions -- ch. 13 Distress Models and Material Characterization for Concrete Pavements -- 13.1.Distresses and Models -- 13.1.1.Cracking -- 13.1.1.1.Fatigue Cracking in JPCP -- 13.1.1.2.Zero-Maintenance Design Fatigue Model -- 13.1.1.3.Calibrated Mechanistic Design Fatigue Model -- 13.1.1.4.ERES-COE Fatigue Model -- 13.1.1.5.PCA Fatigue Model -- 13.1.1.6.ARE Fatigue Model -- 13.1.1.7.Vesic Distress Model -- 13.1.1.8.RISC Distress Function -- 13.1.1.9.Transverse Cracking -- 13.1.2.Transverse Joint Faulting in Jointed Plain Concrete Pavements -- 13.1.2.1.Models to Predict Faulting -- 13.1.2.2.Slab Corner Deflections -- 13.1.3.Erosion Characterization of Base/Subbase -- 13.1.4.Characterizing Free Water within a Pavement Structure -- 13.1.5.PRS M-E Transverse Joint-Faulting Prediction Model -- 13.1.6.Punchouts in Continuously Reinforced Concrete Pavements -- 13.1.6.1.Development of CRCP Punchout Models -- 13.1.6.2.Punchout Distress Model -- 13.1.7.Smoothness Considerations -- 13.2.Tests for Concrete -- 13.2.1.Flexural Strength Tests -- 13.2.2.Compressive Strength -- 13.2.3.Tensile Strength -- 13.2.4.Coefficient of Thermal Expansion Test -- 13.2.5.Fatigue Testing for PCC -- Questions -- ch. 14 Mix and Structural Design of Asphalt Mix Layers -- 14.1.Physical and Volumetric Properties of Asphalt Mix -- 14.1.1.Bulk-Specific Gravity of Compacted Asphalt Mix (Gmb) -- 14.1.2.Theoretical Maximum Density or Maximum Specific Gravity of the Mix (Gmm)/Rice Specific Gravity -- 14.2.Mix Design Methods -- 14.2.1.Hveem Method (ASTM D-1560, D-1561) -- 14.2.2.Marshall Method -- 14.2.3.Superpave Method -- 14.2.3.1.Mix Design Systems of South Africa, France, the United Kingdom and Australia -- 14.3.Structural Design -- 14.3.1.Empirical Methods -- 14.3.1.1.California Bearing Ratio Method -- 14.3.1.2.American Association of State Highway and Transportation Officials Method -- 14.3.2.Mechanistic-Empirical Methods -- 14.3.2.1.Example of Structural Design Procedure Using Mechanistic Principles -- 14.3.2.2.NCHRP 1-37A Mechanistic-Empirical Design Guide -- Questions -- ch. 15 Mix Design and Structural Design for Concrete Pavements -- 15.1.Mix Design -- 15.1.1.Concrete Strength -- 15.1.2.Water-to-Cementitious Materials Ratio -- 15.1.3.Selection of the Water-to-Cementitious Materials Ratio -- 15.1.4.Aggregates -- 15.1.5.Air Content in Concrete -- 15.1.6.Slump -- 15.1.7.Water Content -- 15.1.8.Cementing Materials Content and Type -- 15.1.9.Admixtures -- 15.1.10.Example of Mix Design -- 15.2.Structural Design -- 15.2.1.AASHTO Method -- 15.2.2.Design Input Parameters -- 15.2.2.1.Reliability -- 15.2.2.2.Serviceability -- 15.2.2.3.Drainage Coefficient (Cd) -- 15.2.2.4.Load Transfer Coefficient (J) -- 15.2.3.Rigid Foundation at Shallow Depth -- 15.2.4.Effective Modulus of Subgrade Reaction -- 15.2.4.1.Software Solutions -- 15.2.4.2.AASHTO 1998 Supplement to Design Guide -- 15.2.4.3.MEPDG Design Guide -- 15.2.4.4.Continuously Reinforced Concrete Pavements -- 15.2.4.5.CRCP Design Criteria -- 15.2.4.6.Structural Performance -- 15.2.4.7.Functional Performance -- 15.2.4.8.Reinforcement for CRCP -- 15.2.4.9.Design Methods for CRCP -- 15.2.4.10.AASHTO Interim MEPDG -- 15.2.4.11.AASHTO-86/93 Design Procedure -- 15.2.4.12.Reinforcement Design -- 15.2.4.13.Design Variables for Longitudinal Reinforcement: AASHTO Method -- 15.2.4.14.Limiting Criteria -- 15.2.4.15.Longitudinal Reinforcement Design Procedure -- Questions -- ch. 16 Construction of Asphalt Pavements -- 16.1.Overview -- 16.1.1.Production -- 16.1.2.Transportation and Laydown -- 16.2.Description and Requirements of Components in Hot Mix Asphalt-Producing Plants -- 16.2.1.Aggregate Stockpiles -- 16.2.2.Cold Feed Bins -- 16.2.3.Dryer Drum -- 16.2.4.Hot Elevator and Bins -- 16.2.5.Pugmill -- 16.2.6.Hauling and Storage -- 16.2.7.Drum Plant -- 16.2.8.Dust Collection from HMA Plants -- 16.2.9.Asphalt Storage Tanks -- 16.3.Equipment Used for Transportation, Laydown, and Compaction -- 16.3.1.Trucks -- 16.3.2.Pavers -- 16.3.3.Rollers -- 16.4.Important Factors -- 16.5.Specifications -- 16.5.1.Variability of Materials -- 16.5.2.Use of Quality Control Charts -- 16.6.Preparation of Subgrade and Construction of Base and Subbase Layers -- 16.7.Quality Control and Quality Assurance -- 16.8.Construction of Longitudinal Joints -- 16.8.1.Techniques of Constructing Good Longitudinal Joints -- 16.8.1.1.Combination of Notched Wedge Joint, Rubberized Asphalt Tack Coat, and Minimum Joint Density Requirements -- 16.8.1.2.Rubberized Asphalt Tack Coat and Minimum Joint Density Requirements -- 16.8.1.3.Notched Wedge Joint and Minimum Joint Density Requirements -- 16.8.1.4.Cutting Wheel and Minimum Joint Density Requirements -- 16.8.1.5.Infrared Joint Heating and Minimum Joint Density Requirements -- Questions -- ch. 17 Construction of Concrete Pavements -- 17.1.Overview -- 17.2.Concrete Production -- 17.3.Preparation of Subgrade and Base -- 17.4.Presetting Reinforcements such as Dowel Bars, Tiebars, and Continuous Reinforcement -- 17.4.1.Dowel Bars -- 17.4.2.Tiebars -- 17.4.2.1.Reinforcing Steel (CRCP) -- 17.5.PCC Slab Construction -- 17.5.1.Slipform Paving -- 17.5.2.Stringlines for Slipform Paver -- 17.5.3.Fixed Form Paving -- 17.5.4.Concrete Placement -- 17.5.5.Consolidation -- 17.5.6.Screeding -- 17.6.Finishing -- 17.6.1.Bullfloating -- 17.6.2.Texturing -- 17.6.3.Protection of Pavement Surface from Rain -- 17.6.4.Construction Headers -- 17.7.Curing -- 17.7.1.Evaporation Rate -- 17.8.Paving in Hot and Cold Weather Conditions -- 17.8.1.Edge Slump -- 17.8.2.Smoothness -- 17.9.Jointing -- 17.10.HIPERPAV Software -- 17.11.Joint Sealing -- 17.11.1.Quality Assurance/Quality Control (QC/QA) -- 17.11.2.Differential Scanning Calorimeter -- 17.11.3.Blaine Fineness -- 17.11.4.Gradation -- 17.11.5.Penetration Resistance -- 17.11.6.Cement Materials Temperature Profile (the "Coffee Cup Test") -- 17.11.7.Water-Cement Ratio (Microwave Oven Test) -- 17.11.8.Concrete and Subgrade Temperature and Environmental Conditions -- 17.11.9.Concrete Strength (Early Age) -- 17.11.10.Air Void Analyzer -- 17.11.11.Maturity Test -- 17.11.11.1.Consistency -- 17.11.11.2.Air Content -- 17.11.11.3.Density and Yield -- 17.11.11.4.Sampling Fresh Concrete -- Questions -- ch. 18 Maintenance and Rehabilitation of Pavements: Pavement Management Systems -- 18.1.Overview -- 18.2.Steps in PMS -- 18.3.Different PMS Approaches -- 18.3.1.Criteria for Making Decisions -- 18.4.Distress Survey -- 18.5.Maintenance and Rehabilitation of Asphalt Pavements -- 18.5.1.Maintenance -- 18.5.1.1.Primary Corrective Maintenance Activities -- 18.5.1.2.Primary Preventive Maintenance Activities -- 18.5.2.Recycling -- 18.5.2.1.Hot In-Place Recycling -- 18.5.2.2.Cold Recycling -- 18.5.2.3.Hot Mix Recycling -- 18.6.Maintenance and Rehabilitation of Concrete Pavements -- 18.6.1.Joint and Crack Sealing -- 18.6.2.Slab Stabilization -- 18.6.3.Diamond Grinding -- 18.6.4.Load Transfer Devices -- 18.6.5.Precast Panels for Repair and Rehabilitation -- 18.6.6.Portland Cement Concrete Overlays -- 18.7.Warranty Projects -- Questions -- ch. 19 Airport Pavements -- 19.1.Types, Importance, and Specifications -- 19.2.Structural Design of Airport Asphalt Mix Pavements -- 19.2.1.Design of Flexible Pavement over Existing Pavement -- 19.2.1.1.HMA Overlay on Existing Flexible Pavement -- 19.2.1.2.HMA Overlay on Existing Rigid Pavement with or without Existing HMA Overlay -- 19.3.Design of Concrete Pavements -- 19.4.Design for Airport Pavements with Light Aircrafts -- 19.5.Advanced Design Methods -- 19.5.1.Asphalt Pavements -- 19.5.1.1.For Vertical Strain ev on Top of the Subgrade -- 19.5.1.2.For Horizontal Strain eh at the Bottom of the Surface Layer -- 19.5.2.Rigid Pavements -- 19.6.Nondestructive Testing and Rehabilitation of Airfield Pavements -- 19.7.ACN-PCN -- 19.8.Rehabilitation of PCC Airport Pavements -- 19.9.Construction Quality Control and Acceptance Testing -- 19.10.Constructing, Checking, and Improving Friction/Skid Resistance Drainage of Runways -- 19.11.Asphalt Mixes for Airport Pavement -- 19.11.1.Fuel-Resistant Mix -- 19.11.2.Construction and Maintenance of Longitudinal Joints -- 19.11.3.Time of Construction -- 19.11.4.De-Icing and Anti-Icing -- 19.12.Maintenance of Airport Pavements -- Questions -- ch. 20 Nondestructive Tests -- 20.1.Nuclear Gage -- 20.2.Falling Weight Deflectometer --

Note continued: 20.2.1.Direct Use of Deflections -- 20.2.1.1.Relationship between Deflection Bowl Parameters and Stresses and Strains at Various Locations in the Pavement -- 20.2.2.Back-Calculation -- 20.2.2.1.Steps in Performing Back-Calculation with Evercalc Program -- 20.2.2.2.Detection of Voids in PCC Pavements -- 20.2.2.3.Detection of Nonresilient Pavement Layer Behavior -- 20.2.2.4.Evaluation of Experimental Paving Materials -- 20.2.2.5.Determination of Load Transfer Efficiency for Jointed PCC Pavements -- 20.3.Portable Falling Weight Deflectometer -- 20.4.Rolling Wheel Deflectometer -- 20.5.GeoGauge (Soil Stiffness Gauge) for Soil Compaction -- 20.6.Ground-Penetrating Radar -- 20.7.Portable Seismic Pavement Analyzer -- 20.8.Free Free Resonant Column Test -- 20.9.Ultrasonic Test -- 20.10.Magnetic Induction Tomography -- Question -- ch. 21 Economic Analysis and Cost-Saving Concepts -- 21.1.Economic Analysis -- 21.1.1.Engineering Economy -- 21.1.2.Concept of Life Cycle Cost -- 21.1.3.Techniques -- 21.1.4.Costs in Life Cycle Cost Analysis -- 21.1.5.Probabilistic versus Deterministic Approach -- 21.1.6.Information on Life Cycle Cost Analysis for Pavements -- 21.1.7.Software for Running Life Cycle Cost Analysis -- 21.2.Cost-Saving Concepts -- 21.2.1.Principles of Perpetual Pavements -- 21.2.2.Economic Benefits of Recycling -- Questions -- ch. 22 Instrumentation in Asphalt and Concrete Pavement -- 22.1.Temperature -- 22.2.Soil Moisture Content -- 22.3.Frost Depth -- 22.4.Strain in Asphalt or Concrete Pavement and Soil Layers -- 22.5.Stress in Soil Layers -- 22.6.Deflection in Layers -- 22.7.Data Acquisition Systems -- Questions -- ch. 23 Specialty Applications -- 23.1.Asphalt Mixtures -- 23.1.1.Polymer-Modified Asphalt -- 23.1.2.Asphalt Rubber Mixes -- 23.1.3.Stone Matrix Asphalt -- 23.1.4.Porous Friction Course -- 23.1.5.Warm Mix Asphalt -- 23.1.6.Ultrathin Wearing Course -- 23.2.Concrete Whitetopping -- Questions -- ch. 24 Sustainable Pavement Engineering -- 24.1.Need for Pavements -- 24.2.First Consideration -- 24.3.Design of Layout of Pavements -- 24.4.Construction of Pavements -- 24.5.Use of Waste and Byproducts in Pavements -- 24.6.Workers -- 24.7.Pavement-Building-Nature Symbiosis -- 24.8.Regulatory Bodies and Impetus for Sustainability -- 24.9.Human Factor -- Questions -- ch. 25 Environmental Mitigation in Transportation Projects -- 25.1.How Transportation Impacts the Environment -- 25.2.Model for Assessing Impacts and Developing Mitigation Measures -- 25.3.Project Conception -- 25.4.Impact Assessment -- 25.5.Alternatives Analysis -- 25.6.Public Involvement and Review -- 25.7.Enforcement and Post-Project Monitoring -- 25.8.Transportation Planning and Regional Mitigation Approaches -- Questions.

Covering the entire range of pavement construction, from soil preparation to structural design, life-cycle costing, and analysis, this book integrates the concepts of mix and structural design, emphasizing pavement evaluation and rehabilitation techniques.

Share