ATU Sligo /ATU St Angela's

go

Amazon cover image
Image from Amazon.com

Introduction to autonomous mobile robots /

By: Siegwart, Roland.
Contributor(s): Nourbakhsh, Illah Reza, 1970- | Scaramuzza, Davide.
Series: Intelligent robotics and autonomous agents: Publisher: Cambridge, Mass. : MIT Press, c2011Edition: 2nd ed.Description: xvi, 453 p. : ill. ; 27 cm.Content type: text Media type: unmediated Carrier type: volumeISBN: 9780262015356 (hardcover : alk. paper); 9780262015356:; 0262015358 (hardcover : alk. paper).Subject(s): Mobile robots | Autonomous robotsDDC classification: 629.8932
Contents:
Introduction -- Introduction -- An Overview of the Book -- Locomotion -- Introduction -- Key issues for locomotion -- Legged Mobile Robots -- Leg configurations and stability -- Consideration of dynamics -- Examples of legged robot locomotion -- Wheeled Mobile Robots -- Wheeled locomotion: The design space -- Wheeled locomotion: Case studies -- Aerial Mobile Robots -- Introduction -- Aircraft configurations -- State of the art in autonomous VTOL -- Problems -- Mobile Robot Kinematics -- Introduction -- Kinematic Models and Constraints -- Representing robot position -- Forward kinematic models -- Wheel kinematic constraints -- Robot kinematic constraints -- Examples: Robot kinematic models and constraints
Mobile Robot Maneuverability -- Degree of mobility -- Degree of steerability -- Robot maneuverability -- Mobile Robot Workspace -- Degrees of freedom -- Holonomic robots -- Path and trajectory considerations -- Beyond Basic Kinematics -- Motion Control (Kinematic Control) -- Open loop control (trajectory-following) -- Feedback control -- Problems -- Perception -- Sensors for Mobile Robots -- Sensor classification -- Characterizing sensor performance -- Representing uncertainty -- Wheel/motor sensors -- Heading sensors -- Accelerometers -- Inertial measurement unit (IMU) -- Ground beacons -- Active ranging -- Motion/speed sensors -- Vision sensors -- Fundamentals of Computer Vision -- Introduction -- The digital camera -- Image formation -- Omnidirectional cameras
Structure from stereo -- Structure from motion -- Motion and optical flow -- Color tracking -- Fundamentals of Image Processing -- Image filtering -- Edge detection -- Computing image similarity -- Feature Extraction -- Image Feature Extraction: Interest Point Detectors -- Introduction -- Properties of the ideal feature detector -- Corner detectors -- Invariance to photometric and geometric changes -- Blob detectors -- Place Recognition -- Introduction -- From bag of features to visual words -- Efficient location recognition by using an inverted file -- Geometric verification for robust place recognition -- Applications -- Other image representations for place recognition -- Feature Extraction Based on Range Data (Laser, Ultrasonic) -- Line fitting -- Six line-extraction algorithms
Range histogram features -- Extracting other geometric features -- Problems -- Mobile Robot Localization -- Introduction -- The Challenge of Localization: Noise and Aliasing -- Sensor noise -- Sensor aliasing -- Effector noise -- An error model for odometric position estimation -- To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- Belief Representation -- Single-hypothesis belief -- Multiple-hypothesis belief -- Map Representation -- Continuous representations -- Decomposition strategies -- State of the art: Current challenges in map representation -- Probabilistic Map-Based Localization -- Introduction -- The robot localization problem -- Basic concepts of probability theory -- Terminology -- The ingredients of probabilistic map-based localization
Classification of localization problems -- Markov localization -- Kalman filter localization -- Other Examples of Localization Systems -- Landmark-based navigation -- Globally unique localization -- Positioning beacon systems -- Route-based localization -- Autonomous Map Building -- Introduction -- SLAM: The simultaneous localization and mapping problem -- Mathematical definition of SLAM -- Extended Kalman Filter (EKF) SLAM -- Visual SLAM with a single camera -- Discussion on EKF SLAM -- Graph-based SLAM -- Particle filter SLAM -- Open challenges in SLAM -- Open source SLAM software and other resources -- Problems -- Planning and Navigation -- Introduction -- Competences for Navigation: Planning and Reacting -- Path Planning -- Graph search -- Potential field path planning
Obstacle avoidance -- Bug algorithm -- Vector field histogram -- The bubble band technique -- Curvature velocity techniques -- Dynamic window approaches -- The Schlegel approach to obstacle avoidance -- Nearness diagram -- Gradient method -- Adding dynamic constraints -- Other approaches -- Overview -- Navigation Architectures -- Modularity for code reuse and sharing -- Control localization -- Techniques for decomposition -- Case studies: tiered robot architectures .
Summary: This text offers students and other interested readers an overview of the technology of mobility - the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks - including locomotion, sensing, localization and motion planning.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references and index.

1. Introduction -- 1.1. Introduction -- 1.2. An Overview of the Book -- 2. Locomotion -- 2.1. Introduction -- 2.1.1. Key issues for locomotion -- 2.2. Legged Mobile Robots -- 2.2.1. Leg configurations and stability -- 2.2.2. Consideration of dynamics -- 2.2.3. Examples of legged robot locomotion -- 2.3. Wheeled Mobile Robots -- 2.3.1. Wheeled locomotion: The design space -- 2.3.2. Wheeled locomotion: Case studies -- 2.4. Aerial Mobile Robots -- 2.4.1. Introduction -- 2.4.2. Aircraft configurations -- 2.4.3. State of the art in autonomous VTOL -- 2.5. Problems -- 3. Mobile Robot Kinematics -- 3.1. Introduction -- 3.2. Kinematic Models and Constraints -- 3.2.1. Representing robot position -- 3.2.2. Forward kinematic models -- 3.2.3. Wheel kinematic constraints -- 3.2.4. Robot kinematic constraints -- 3.2.5. Examples: Robot kinematic models and constraints

3.3. Mobile Robot Maneuverability -- 3.3.1. Degree of mobility -- 3.3.2. Degree of steerability -- 3.3.3. Robot maneuverability -- 3.4. Mobile Robot Workspace -- 3.4.1. Degrees of freedom -- 3.4.2. Holonomic robots -- 3.4.3. Path and trajectory considerations -- 3.5. Beyond Basic Kinematics -- 3.6. Motion Control (Kinematic Control) -- 3.6.1. Open loop control (trajectory-following) -- 3.6.2. Feedback control -- 3.7. Problems -- 4. Perception -- 4.1. Sensors for Mobile Robots -- 4.1.1. Sensor classification -- 4.1.2. Characterizing sensor performance -- 4.1.3. Representing uncertainty -- 4.1.4. Wheel/motor sensors -- 4.1.5. Heading sensors -- 4.1.6. Accelerometers -- 4.1.7. Inertial measurement unit (IMU) -- 4.1.8. Ground beacons -- 4.1.9. Active ranging -- 4.1.10. Motion/speed sensors -- 4.1.11. Vision sensors -- 4.2. Fundamentals of Computer Vision -- 4.2.1. Introduction -- 4.2.2. The digital camera -- 4.2.3. Image formation -- 4.2.4. Omnidirectional cameras

4.2.5. Structure from stereo -- 4.2.6. Structure from motion -- 4.2.7. Motion and optical flow -- 4.2.8. Color tracking -- 4.3. Fundamentals of Image Processing -- 4.3.1. Image filtering -- 4.3.2. Edge detection -- 4.3.3. Computing image similarity -- 4.4. Feature Extraction -- 4.5. Image Feature Extraction: Interest Point Detectors -- 4.5.1. Introduction -- 4.5.2. Properties of the ideal feature detector -- 4.5.3. Corner detectors -- 4.5.4. Invariance to photometric and geometric changes -- 4.5.5. Blob detectors -- 4.6. Place Recognition -- 4.6.1. Introduction -- 4.6.2. From bag of features to visual words -- 4.6.3. Efficient location recognition by using an inverted file -- 4.6.4. Geometric verification for robust place recognition -- 4.6.5. Applications -- 4.6.6. Other image representations for place recognition -- 4.7. Feature Extraction Based on Range Data (Laser, Ultrasonic) -- 4.7.1. Line fitting -- 4.7.2. Six line-extraction algorithms

4.7.3. Range histogram features -- 4.7.4. Extracting other geometric features -- 4.8. Problems -- 5. Mobile Robot Localization -- 5.1. Introduction -- 5.2. The Challenge of Localization: Noise and Aliasing -- 5.2.1. Sensor noise -- 5.2.2. Sensor aliasing -- 5.2.3. Effector noise -- 5.2.4. An error model for odometric position estimation -- 5.3. To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- 5.4. Belief Representation -- 5.4.1. Single-hypothesis belief -- 5.4.2. Multiple-hypothesis belief -- 5.5. Map Representation -- 5.5.1. Continuous representations -- 5.5.2. Decomposition strategies -- 5.5.3. State of the art: Current challenges in map representation -- 5.6. Probabilistic Map-Based Localization -- 5.6.1. Introduction -- 5.6.2. The robot localization problem -- 5.6.3. Basic concepts of probability theory -- 5.6.4. Terminology -- 5.6.5. The ingredients of probabilistic map-based localization

5.6.6. Classification of localization problems -- 5.6.7. Markov localization -- 5.6.8. Kalman filter localization -- 5.7. Other Examples of Localization Systems -- 5.7.1. Landmark-based navigation -- 5.7.2. Globally unique localization -- 5.7.3. Positioning beacon systems -- 5.7.4. Route-based localization -- 5.8. Autonomous Map Building -- 5.8.1. Introduction -- 5.8.2. SLAM: The simultaneous localization and mapping problem -- 5.8.3. Mathematical definition of SLAM -- 5.8.4. Extended Kalman Filter (EKF) SLAM -- 5.8.5. Visual SLAM with a single camera -- 5.8.6. Discussion on EKF SLAM -- 5.8.7. Graph-based SLAM -- 5.8.8. Particle filter SLAM -- 5.8.9. Open challenges in SLAM -- 5.8.10. Open source SLAM software and other resources -- 5.9. Problems -- 6. Planning and Navigation -- 6.1. Introduction -- 6.2. Competences for Navigation: Planning and Reacting -- 6.3. Path Planning -- 6.3.1. Graph search -- 6.3.2. Potential field path planning

6.4. Obstacle avoidance -- 6.4.1. Bug algorithm -- 6.4.2. Vector field histogram -- 6.4.3. The bubble band technique -- 6.4.4. Curvature velocity techniques -- 6.4.5. Dynamic window approaches -- 6.4.6. The Schlegel approach to obstacle avoidance -- 6.4.7. Nearness diagram -- 6.4.8. Gradient method -- 6.4.9. Adding dynamic constraints -- 6.4.10. Other approaches -- 6.4.11. Overview -- 6.5. Navigation Architectures -- 6.5.1. Modularity for code reuse and sharing -- 6.5.2. Control localization -- 6.5.3. Techniques for decomposition -- 6.5.4. Case studies: tiered robot architectures .

This text offers students and other interested readers an overview of the technology of mobility - the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks - including locomotion, sensing, localization and motion planning.

Share